188 research outputs found

    Computational complexity of impact size estimation forspreading processes on networks

    Get PDF
    Spreading processes on networks are often analyzed to understand how the outcome of the process (e.g. the number of affected nodes) depends on structural properties of the underlying network. Most available results are ensemble averages over certain interesting graph classes such as random graphs or graphs with a particular degree distributions. In this paper, we focus instead on determining the expected spreading size and the probability of large spreadings for a single (but arbitrary) given network and study the computational complexity of these problems using reductions from well-known network reliability problems. We show that computing both quantities exactly is intractable, but that the expected spreading size can be efficiently approximated with Monte Carlo sampling. When nodes are weighted to reflect their importance, the problem becomes as hard as the s-t reliability problem, which is not known to yield an efficient randomized approximation scheme up to now. Finally, we give a formal complexity-theoretic argument why there is most likely no randomized constant-factor approximation for the probability of large spreadings, even for the unweighted case. A hybrid Monte Carlo sampling algorithm is proposed that resorts to specialized s-t reliability algorithms for accurately estimating the infection probability of those nodes that are rarely affected by the spreading proces

    Multi-objective integer programming: An improved recursive algorithm

    Get PDF
    This paper introduces an improved recursive algorithm to generate the set of all nondominated objective vectors for the Multi-Objective Integer Programming (MOIP) problem. We significantly improve the earlier recursive algorithm of \"Ozlen and Azizo\u{g}lu by using the set of already solved subproblems and their solutions to avoid solving a large number of IPs. A numerical example is presented to explain the workings of the algorithm, and we conduct a series of computational experiments to show the savings that can be obtained. As our experiments show, the improvement becomes more significant as the problems grow larger in terms of the number of objectives.Comment: 11 pages, 6 tables; v2: added more details and a computational stud

    Approximate solutions in space mission design

    Get PDF
    In this paper, we address multi-objective space mission design problems. From a practical point of view, it is often the case that,during the preliminary phase of the design of a space mission, the solutions that are actually considered are not 'optimal' (in the Pareto sense)but belong to the basin of attraction of optimal ones (i.e. they are nearly optimal). This choice is motivated either by additional requirements that the decision maker has to take into account or, more often, by robustness considerations. For this, we suggest a novel MOEA which is a modification of the well-known NSGA-II algorithm equipped with a recently proposed archiving strategy which aims at storing the set of approximate solutions of a given MOP. Using this algorithm we will examine some space trajectory design problems and demonstrate the benefit of the novel approach

    On the benefit of modifying the strategic allocation of cyclically calling vessels for multi-terminal container operators

    Get PDF
    We present a case study based on a multi-terminal container operation in Antwerp, Belgium, where a set of cyclically calling container vessels is processed. The operator faces the problem of strategically allocating a terminal, a berthing interval, and a variable number of quay cranes to the vessels in the set. Restricting properties are terminal quay lengths, number of quay cranes and storage capacities. Currently, the operator's objective is to satisfy the preferences of the vessel lines, with respect to a terminal and berthing time, as much as possible. We are interested in the benefit of modifying a given allocation, i.e. the potential crane and inter-terminal costs savings if specific changes to a given allocation are allowed. An MILP is implemented in a two-step optimization, which enables us to efficiently investigate the benefit of modification. Experimental results suggest that small changes in a given allocation may lead to significant cost savings

    Local Optimal Sets and Bounded Archiving on Multi-objective NK-Landscapes with Correlated Objectives

    Get PDF
    The properties of local optimal solutions in multi-objective combinatorial optimization problems are crucial for the effectiveness of local search algorithms, particularly when these algorithms are based on Pareto dominance. Such local search algorithms typically return a set of mutually nondominated Pareto local optimal (PLO) solutions, that is, a PLO-set. This paper investigates two aspects of PLO-sets by means of experiments with Pareto local search (PLS). First, we examine the impact of several problem characteristics on the properties of PLO-sets for multi-objective NK-landscapes with correlated objectives. In particular, we report that either increasing the number of objectives or decreasing the correlation between objectives leads to an exponential increment on the size of PLO-sets, whereas the variable correlation has only a minor effect. Second, we study the running time and the quality reached when using bounding archiving methods to limit the size of the archive handled by PLS, and thus, the maximum size of the PLO-set found. We argue that there is a clear relationship between the running time of PLS and the difficulty of a problem instance.Comment: appears in Parallel Problem Solving from Nature - PPSN XIII, Ljubljana : Slovenia (2014

    Local Optimal Sets and Bounded Archiving on Multi-objective NK-Landscapes with Correlated Objectives

    Get PDF
    The properties of local optimal solutions in multi-objective combinatorial optimization problems are crucial for the effectiveness of local search algorithms, particularly when these algorithms are based on Pareto dominance. Such local search algorithms typically return a set of mutually nondominated Pareto local optimal (PLO) solutions, that is, a PLO-set. This paper investigates two aspects of PLO-sets by means of experiments with Pareto local search (PLS). First, we examine the impact of several problem characteristics on the properties of PLO-sets for multi-objective NK-landscapes with correlated objectives. In particular, we report that either increasing the number of objectives or decreasing the correlation between objectives leads to an exponential increment on the size of PLO-sets, whereas the variable correlation has only a minor effect. Second, we study the running time and the quality reached when using bounding archiving methods to limit the size of the archive handled by PLS, and thus, the maximum size of the PLO-set found. We argue that there is a clear relationship between the running time of PLS and the difficulty of a problem instance.Comment: appears in Parallel Problem Solving from Nature - PPSN XIII, Ljubljana : Slovenia (2014

    Robust cyclic berth planning of container vessels

    Get PDF
    We consider a container terminal operator who faces the problem of constructing a cyclic berth plan. Such a plan defines the arrival and departure times of each cyclically calling vessel on a terminal, taking into account the expected number of containers to be handled and the necessary quay and crane capacity to do so. Conventional berth planning methods ignore the fact that, in practice, container terminal operator and shipping line agree upon an arrival window rather than an arrival time: if a vessel arrives within that window then a certain vessel productivity and hence departure time is guaranteed. The contributions of this paper are twofold. We not only minimize the peak loading of quay cranes in a port, but also explicitly take into account the arrival window agreements between the terminal operator and shipping lines. We present a robust optimization model for cyclic berth planning. Computational results on a real-world scenario for a container terminal in Antwerp show that the robust planning model can reach a substantial reduction in the crane capacity that is necessary to meet the window arrival agreements, as compared to a deterministic planning approach

    Functional Brain Imaging with Multi-Objective Multi-Modal Evolutionary Optimization

    Get PDF
    Functional brain imaging is a source of spatio-temporal data mining problems. A new framework hybridizing multi-objective and multi-modal optimization is proposed to formalize these data mining problems, and addressed through Evolutionary Computation (EC). The merits of EC for spatio-temporal data mining are demonstrated as the approach facilitates the modelling of the experts' requirements, and flexibly accommodates their changing goals

    On the Effect of Connectedness for Biobjective Multiple and Long Path Problems

    Get PDF
    Recently, the property of connectedness has been claimed to give a strong motivation on the design of local search techniques for multiobjective combinatorial optimization (MOCO). Indeed, when connectedness holds, a basic Pareto local search, initialized with at least one non-dominated solution, allows to identify the efficient set exhaustively. However, this becomes quickly infeasible in practice as the number of efficient solutions typically grows exponentially with the instance size. As a consequence, we generally have to deal with a limited-size approximation, where a good sample set has to be found. In this paper, we propose the biobjective multiple and long path problems to show experimentally that, on the first problems, even if the efficient set is connected, a local search may be outperformed by a simple evolutionary algorithm in the sampling of the efficient set. At the opposite, on the second problems, a local search algorithm may successfully approximate a disconnected efficient set. Then, we argue that connectedness is not the single property to study for the design of local search heuristics for MOCO. This work opens new discussions on a proper definition of the multiobjective fitness landscape.Comment: Learning and Intelligent OptimizatioN Conference (LION 5), Rome : Italy (2011

    Improving Many-Objective Evolutionary Algorithms by Means of Edge-Rotated Cones

    Get PDF
    Given a point in mm-dimensional objective space, any ε\varepsilon-ball of a point can be partitioned into the incomparable, the dominated and dominating region. The ratio between the size of the incomparable region, and the dominated (and dominating) region decreases proportionally to 1/2m11/2^{m-1}, i.e., the volume of the Pareto dominating orthant as compared to all other volumes. Due to this reason, it gets increasingly unlikely that dominating points can be found by random, isotropic mutations. As a remedy to stagnation of search in many objective optimization, in this paper, we suggest to enhance the Pareto dominance order by involving an obtuse convex dominance cone in the convergence phase of an evolutionary optimization algorithm. We propose edge-rotated cones as generalizations of Pareto dominance cones for which the opening angle can be controlled by a single parameter only. The approach is integrated in several state-of-the-art multi-objective evolutionary algorithms (MOEAs) and tested on benchmark problems with four, five, six and eight objectives. Computational experiments demonstrate the ability of these edge-rotated cones to improve the performance of MOEAs on many-objective optimization problems
    corecore